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Summary

Aa exteasion of the Class of Regular Estimators has been propoied in order to
obtain a larger class within which the estimators are linearly invariant almost
everywhere.
Existence of the optimal estimator in this proposed class hasbeen verified
alongwith the importanceof balanced sampling for achieving the minimum
-variance. .
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Introduction

In an attempt to findout the optimum estimator in the linear class it
was observedby Roy and Chakravarti [1] that though no best estimator
exists in the linear class the best estimator exists in a more restricted

class, called by them as the Class of Regular Estimatori (CRE). They
had shown that a regular estimator is necessarily linearly invariant in
almost everywhere. Also, for the variance of any regular estimator,
there exists a lower bound which is attainable through balanced sampling.

In this present work we shall try to extend the CRE in such a way
that all members of that extended class are necessarily linearly invariants
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with probability one. Within that extended class we shall also attempt
to findout the minimum variance estimator and demonstrate therefrom
the usefulness of balanced sampling.

2. DefiDitions

We shall use the following notations for our subsequent study.

N = size of population,

U = (ui, Ui, . . . , Un), the population of N units,

y, = y (ui), the value of the variable y on ith unit «/.

N ' .
M = (1/iV) S the population mean,

1=1

N

a® = (1//V) S (yi — MY, the population variance,
i=l

s = observed sample of units from U,'

„(j) = effective sample size, i.e. the number of distinct units in the
sample 5, , •

N •

ty (s) = S fl/ (j), an estimator based on s with respect to the vari-
1=1

able y.

Definition I. An estimator ty (j) is said to be linearly invariant if for
any z = a by,2L linear transformation of y,

t.{s) abty {s) (2.1)

It may be verified that this condition is equivalent to
ai (j) = 1 for all s. (2.2)

Definition 2. An estimator ty {s) is said to belong to the Class-of
Regular Estimators (CRE) if

E{ty is)) = M.

and Var {ty (j)) = kcr^

for some constant k.

These above two definitions are from Roy and Chakravarti and they
N

have shown that if ty (s) eCRE then h^a, (s) = 1 almost everywhere,
implying thereby that ty (s) is linearly invariant. We shall now present
an extension of CRE as follows.
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Definition 3. An estimator ty (j) is said to belong to the Extended Class
of Regular Estimasors (ECRE) if

E{t, W) = M

and Var (t, (s)) = kf(yu .. ., y»)

for some constant k and any homogeneous function/(•) of order 2
satisfying the condition

f(.yu ' • . ,y») = Q whenever^yi = y2 = • • • = yif-

It may be noted that a' is a particular case of/(-) where

f(yt

Thus CRE S ECRE.

Similar is the case of square of Mean Deviation around mean or median.
While the CRE is unable to cover stratification problems ECRE is in a
position to include the same.

3. Properties of ECRE

With the above definition of ECRE we shall now examine a few pro
perties of interest to indicate the importance- of this extended class of
estimators.

Result 1, An extended regular estimator is linearly invariant.

Proof. Let ty (s) be an extended regular estimator. Then, as because
ty (j).ECRB

Var (ty (s)) = k/(yi,. . . , y/r) for all y and j.

or, Var a, (s) yt^ =kf(y,, ...,y/t) for all yand a.
In particular when j'l = yt ='•..= yAf = c, say

c« Var{ (j) }=4/(c ,.. .,e) for all J
implying thereby that

Var
ff

S a, (5) 0 for all s

N
or, S 0, (s) = Constant for all 3, d,c.

i=l

-p, say.
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Then

N • -
p = E(p) = S £ {a, (j)) (,3_ n

i=\ /

Again from the fact that 6 ECRE

E{ty{s)) = M for all

or, E {ai (i)) - for all / = 1,2,.. . ,N. (3.2)

Now combining (3.1) with (3.2) we get
N . N . .

p = 2 B{ai (s)) = S l/N = 1 almost everywhere.
/=1 1=1

Hence from (2.2) and definition 1, ty (s) is a linearly invariant estimator.
That completes the proof of the result. • •

We shall next try to findout a lower bound for the variance of any
extended regular estimator. For this, let us consider

• • jv .

F = £• 2 (£7; (s) — m {s)ln (j))2
1=1

where «/ (5) ^

Then

0^ V

1 if M, 6 j

,0 otherwise.

N N

= ^Var (ai (s)) + E' [a^ (i-)) - E(l/« {$)).
N

or, Var (a/ (j)) ^ E{\In (s)) = \/N (3.3)

from (3.2).

Our nextstep will be to evaluate Var (a (s)) values for i = 1,2 , . . ,N.
For this let us introduce the following symbols.

' fi = fiyi , •. • , yN) evaluated at the following point
1 if /c = ;

0 otherwise,yfc =

and

ftj —fiy\ . • . , Jif) evaluated at the following point
'1 if A: = j and j

0 otherwise.
JA =

Trivially, /,,• = fi for all i.
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Result 2. under the above set up for all s

Var {at (s)) = k /,• for all i . '

and Cov (o; (s), aj (j)) = (kjl) for all i and J,
. Proof. Because ty(s) s ECRE we get

N

Var

yk =

yt j = kf{yi j'jv) for all 7and s.
In particular when >>'8 are such that yt = ! and yk = 0 for k (^i) =
I,..., N.

Var (at («)) = k ft for all j ,
and this is true for all /— 1, 2, . . . , jV. Similarly considering

1 for k = i and j
0 otherwise.

Var (a/ (j) + a; (j)) = kfi, for all s
or, 2 Cov (<7; {s), a /j)) = k fij — kfi —kfj for all s
or, Cov (a, (s), aj (s)) = (kjl) (f,> - fi - fj) for all ^

and this is true for all

Hence the result. •

Result 3. For the variance of any extended regular estimator ty (j)
of M there exists a lower bound given by

Var (tyis)) >I 1 1

nis) N-
/(Ji

N

S /,
(=7

sn)

Proof. For ty (s) e ECRE we have from (3.3) and Result 2
JV 11

.J ^ n{,s) n'

or- /c>

Then

1 1 1 1

•n (j) N N •

i=l

Var (f^(5)) = kf{yi , . . . , Jn)

E
1 1

nis) N
fjyi,.. • ,yN) .

N

• S fi
i=i

It may bs further noted that lower bound for the variance of any
expended regular estimator is attained when F = 0. This implies that

Oi is) = iti is)ln (j) for all / = 1, 2 N.

•



90 JOURNAL OF THE INDIAN SOCIBTY OF AORICULTURAL STATtSTtCS

Then from (3.2)

E {rii (s)ln (s))=llN i = I, 2 N. (3.4)

The sampling design for which (3.4) holds true constitutes a balanced
sampling design. The corresponding minimum variance estimator is

given hyt*{s) where

ty(s) = S y, m (s)ln (s). ...(3.5)

The results (3.4) and (3.5) are independent of the choice of the function
fO) and hold true in general as long as/(•) is homogeneous of order 2
such that/(I, 1 ,.... 1) = 0.
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